3 research outputs found

    A reliable strategy for slug flow attenuation in pipeline-riser systems

    Get PDF
    Oil and gas activities across the globe now take place deep offshore. To operate in this harsh environment, there are numerous challenges. These can be in the form of high cost of production, space constraints, operational and technological demands. The co-transportation of oil and gas in same pipeline is one of the operational and technological approaches adopted in the industry to meet the transportation of produced crude. This approach comes with its attendant flow assurance difficulties. Slugging is one of such problems which can constitute operational hitches resulting in production reduction and sometimes eventual plant shutdown. Existing attenuation techniques are limited in various ways. Therefore, seeking a reliable solution to this problem is highly desired.In this study, an experimental study of multiple techniques for slug attenuation was attempted. A passive device-the intermittent slug absorber, topside choking and topside separator were investigated. The results show that a combination of the methods proves to be more effective compared to individual techniques. A significant reduction in riser- base pressure of up to 39% was achieved. This is advantageous and translates to an increase in oil recovery. Thus, the proposed strategy helps to achieve system stability and improved production at a lower cost

    Characteristics of horizontal gas-liquid two-phase flow measurement in a medium-sized pipe using gamma densitometry

    Get PDF
    Two-phase flows are common occurrences in many industrial applications. The understanding of their characteristics in industrial piping systems is vital for the efficient design, optimization, and operation of industrial processes. Most of the previous experimental studies involving the use of gamma densitometers for holdup measurements in air-water mixtures are limited to smaller diameter pipes (generally regarded as those with < 50 mm in nominal diameter). Further, very few literature report experimental data obtained using gamma desitometers. This paper presents an application of a gamma densitometer in the measurement of two-phase flow characteristics in an intermediate diameter pipe (nominal diameter between 50 mm and 100 mm). Scaled air-water experiments were performed in a 17-m long, 0.0764-m internal diameter horizontal pipe. Liquid superficial velocity ranged between 0.1–0.4 m/s while gas superficial velocity ranged from 0.3 to 10.0 m/s. The measured parameters include liquid holdup, pressure gradient, flow pattern, and slug flow features. The flow patterns observed were stratified, stratified-wavy, plug, slug, and annular flows. Plug and slug flow patterns showed good agreement with established flow pattern maps. Furthermore, the slug translational velocity was observed to increase with increasing mixture velocity, as reported by previous authors, hence establishing the reliability of the instrumentation employed. The slug body length was also measured using the gamma densitometer and was found to be within the range 24–36D with a mean length of 30.6D

    An Improved Model for the Prediction of Liquid Loading in gas Wells using Firefly and Particle Swarm Optimization Algorithms

    Get PDF
    Liquid loading is an undesired phenomenon in gas wells that occurs when producing wells attain a flow rate below which liquid will not be able to flow to the surface. The inability of the energy from the gas to transport the liquid to the surface causes back flow and eventual accumulation of liquid at the wellbore. This is characterised by intermittent flow, which, if left unchecked, can eventually kill the well. An effective and reliable predictive method must therefore, be employed. In this study, improved models based on data set from condensate/water in a gas well were developed by applying firefly (FA) and particle swarm optimisation (PSO) algorithms. The results showed that the model developed out perform many of the existing models. The models predicted liquid loading in gas well at 86% level of accuracy compared to the 81% highest possible from published models. Although, the FA and PSO models predicted liquid loading at higher accuracy compared with Turner and Coleman models for higher wellhead pressure systems, the Coleman model appeared to perform better in the prediction of critical gas rate for low-pressure systems. However, the developed model can significantly improve the prediction of liquid loading in gas wells at a higher reliability and accuracy levels. Thus, the proposed models can be a veritable tool for accurately predicting liquid loading in gas wells
    corecore